
Ada 2005
Putting It All Together

S. Tucker Taft, Chairman and CTO
SofCheck, Inc.

Ada Germany Conference
Stuttgart, Germany – October 2004

© 2004 SofCheck, Inc.
- 2 -

Ada is Alive and Evolving

! Ada 83 Mantra: �No Subsets, No Supersets�
! Ada 95 Mantra: �Portable Power to the Programmer�
! Ada 2005 Mantra: �Putting It All Together�...

- Safety and Portability of Java
- Efficiency and Flexibility of C/C++
- Unrivaled Standardized Support for Real-Time and High-Integrity

Systems

! Open-Source GNAT and Internet have fostered...
- Active interplay between users, vendors, and language lawyers
- Grass roots interest in Ada
- Additional open-source contributions to compiler and library
- Experiments with new syntax and semantics

© 2004 SofCheck, Inc.
- 3 -

Ada is Well Supported

! Four Major Ada Compiler Vendors:
- ACT (GNAT Pro)
- Aonix (ObjectAda)
- Green Hills (AdaMulti)
- IBM Rational (Apex)

! Several Smaller Ada Compiler Vendors
- DDC-I
- Irvine Compiler
- OC Systems
- RR Software
- SofCheck

! Many Tool Vendors Supporting Ada
- IPL, Vector, LDRA, PolySpace, Grammatech, Praxis...

© 2004 SofCheck, Inc.
- 4 -

ISO WG9 and Ada Rapporteur Group

! Stewards of Ada�s Standardization and Evolution

! Includes users, vendors, and language lawyers
- Supported by AdaEurope and SIGAda

! First �Official� Corrigendum Released 9/2000

! First Language �Amendment� Set for Fall 2005

! WG9 Established Overall Direction for Amendment...

© 2004 SofCheck, Inc.
- 5 -

Overall Goals for Ada 2005 Amendment

! Enhance Ada�s Position as a:
- Safe
- High Performance
- Flexible
- Portable
- Interoperable
- Distributed, Concurrent, Real-Time,

Object-Oriented Programming Language

! Further Integrate and Enhance the
Object-Oriented Capabilities of Ada

Ada2005

Ada2005

© 2004 SofCheck, Inc.
- 6 -

Ada 2005 � Putting It All Together

Full Object-
Orientation

Space and Time
Efficiency

Hard and Soft
Real-Time

SafetySafety

PortabilityPortability

InteroperabilityInteroperability

Active and Passive
Synchronized Interfaces

EDF
Scheduling

Protected
Types

Multi-Interface
Inheritance

Default Static
Binding

© 2004 SofCheck, Inc.
- 7 -

Safety is Our Most Important Product

! Ada is the premier language for safety critical software

! Ada�s safety features are critical to making Ada such a
high-productivity language in all domains

! Amendments to Ada carefully designed so as to not open
any new safety holes

! Several amendments provide even more safety, more
opportunities for catching mistakes at compile-time

SAFETY
CERTIFIED

© 2004 SofCheck, Inc.
- 8 -

Ada 2005 Safety-Related Amendments

! Syntax to prevent unintentional overriding or
non-overriding of primitive operations
- Catch spelling errors, parameter profile mismatches,

maintenance confusion

! Standardized Assert Pragma
- Assertion_Policy pragma determines how Assert is handled by

implementation (Check, Ignore, �)

! Availability of �not null� and �access constant� qualifiers for access
parameters

! Standardized High-Integrity �Ravenscar� Profile
! More Flexible Information Hiding Structure (�private with�)
! Standardized No_Return Pragma

- Identifies routines guaranteed to never return to point of call

! Handlers for Unexpected Task Termination

© 2004 SofCheck, Inc.
- 9 -

Ada 2005 Portability

! Ada is a very �strong� standard
! Vigorous publicly available validation suite of 3000+ tests

- 2000+ Self-Checking Executable Tests
- Also Includes Large Number of Compile-Time and Link-Time Error

Detection Tests

! Active ISO Rapporteur Groups Handling Interpretation Issues
! Ada 2005 Enhancements to Existing Ada 95 Library:

- Standard Packages for Files and Directories
- Standard Packages for Calendar Math, Timezones, and I/O
- Standard Package for Environment Variables
- Standard �Container� and Sorting (Generic) Packages

! Ada 2005 Enhancements for Real-Time and High-Integrity
- Earliest-Deadline First (EDF) and Round-Robin Scheduling
- Ravenscar High-Integrity Run-Time Profile

© 2004 SofCheck, Inc.
- 10 -

Ada 2005 Interoperability

! Today�s Reality:
- The rise in importance of the Java Virtual machine and .Net common

runtime
- Increasingly complex APIs; API Wars
- Component based systems
- Multilingual Systems
- Dynamically Bound Systems

! Cyclic Dependence between types is the norm in complex
O-O systems

! Emergence of Notion of �Interface� that can have multiple
implementations (CORBA, Java, C#, COM)

! Amendments to Ada help address this reality

© 2004 SofCheck, Inc.
- 11 -

Enhancing Interoperability with Today�s Reality

! Support Cyclic Dependence Between Types
in Different Packages
- �Limited with� context clause

! Support Notion of �Interface� as used in Java,
CORBA, C#, etc.
- �interface� types
- Active and Passive �synchronized� interface types

integrate
O-O programming with real-time programming

! Familiar Object.Operation notation supported
- Uniformity between synchronized and unsynchronized

types

! Pragma �Unchecked_Union� for interoperating with
C/C++ subsystems

© 2004 SofCheck, Inc.
- 12 -

Example of �limited with� context clause

limited with Departments; -- << --
package Employees is

type Employee is private;
procedure Assign_Employee(E : in out Employee;

D : access Departments.Department);
...
function Current_Department(

D : Employee) return
access Departments.Department;

end Employees;

limited with Employees; -- << --
package Departments is

type Department is private;
procedure Choose_Manager(D : in out Department;

Manager : access Employees.Employee);
...

end Departments;

© 2004 SofCheck, Inc.
- 13 -

Multiple Inheritance via Interface Types

! type NT is new T
and Int1 and Int2 with

record ▌ end record;
! Int1 and Int2 are �Interfaces�

- Declared as: ▌type Int1 is interface;▌
- Similar to abstract tagged null record (no data)
- All primitives must be abstract or null

! NT must provide primitives that match all primitives of Int1 and Int2
- In other words, NT implements Int1 and Int2.

! NT is implicitly convertible to Int1�Class and Int2�Class, and explicitly
convertible back
- and as part of dispatching, of course

! Membership test can be used to check before converting
back (narrowing)

Int2Int1

NT

T

© 2004 SofCheck, Inc.
- 14 -

Example of Interface Types

limited with Observed_Objects;
package Observers is -- “Observer” pattern

type Observer is interface;
type Observer_Ptr is access all Observer’Class;

procedure Notify(O : in out Observer;
Obj : access Observed_Objects.Observed_Obj’Class)
is abstract;

procedure Set_Next(O : in out Observer; Next : Observer_Ptr)
is abstract;

function Next(O : Observer) return Observer_Ptr is abstract;

type Observer_List is private;
procedure Add_Observer(List : in out Observer_List;

O : Observer_Ptr);
procedure Remove_Observer(List : in out Observer_List;

O : Observer_Ptr);
function First_Observer(List : in Observer_List)

return Observer_Ptr;

© 2004 SofCheck, Inc.
- 15 -

Synchronized Interfaces

! Interface concept generalized to apply to Protected and Task types
- �Limited� Interface can be implemented by:

" Non-limited (tagged) interface
" Synchronized interface

- �Synchronized� Interface can be implemented by:
" Task interfaces or types (�active�)
" Protected interfaces or types (�passive�), e.g.:

type Semaphore is synchronized interface;
procedure Acquire(Sem: in out Semaphore);
procedure Release(Sem: in out Semaphore);

protected type Sem_With_Caution_Period is Semaphore with
entry Acquire;
procedure Release;
function Is_In_Caution_Period return Boolean;
procedure Release_With_Caution;

private
Sem_State: ...

end Sem_With_Caution_Period;

© 2004 SofCheck, Inc.
- 16 -

Object.Operation Syntax

! More familiar to users of other object-oriented languages
! Reduces need for extensive utilization of �use� clause
! Allows for uniform reference to dispatching operations and class-

wide operations, on pointers or objects; e.g.:
package Windows is

type Root_Window is abstract tagged private;
procedure Notify_Observers(Win : Root_Window’Class);
procedure Display(Win : Root_Window) is abstract;
...

end Windows;
package Borders is

type Bordered_Window is new Windows.Root_Window with private;
procedure Display(Win : Bordered_Window);
...

procedure P(BW: access Bordered_Window’Class) is
begin

BW.Display; -- both of
BW.Notify_Observers; -- these ▌work▌

© 2004 SofCheck, Inc.
- 17 -

Other Enhancements�

! Generalized Use of Anonymous Access Types
! Generalized Parameterization of Formal Packages
! Make Limited Types Less Limited
! Pragma Pure_Function (from GNAT)
! �private with A.B;� � A.B only visible in private part
! Downward closures � local subprograms can be passed as

parameters to other subprograms
- Uses anonymous access-to-subprogram types for parameters.

! Task termination handlers
- especially for termination due to unhandled exceptions

© 2004 SofCheck, Inc.
- 18 -

Generalized Use of Anonymous Access Types

! Two kinds of generalization
- Allow access �parameters� for access-to-constant and

access-to-subprogram cases
- Allow use of anonymous access types in components, object

renamings, and function results

! Should help reduce �noise� associated with unnecessary explicit
conversions of access values

! Also allow optional specification of �not null� constraint on access
subtypes, and anonymous access type specifications
- E.g.: type String_Ref is access all String not null;
- Improves safety, efficiency, and documentation by pushing check for

null to caller or assigner rather than ultimate point of use.

© 2004 SofCheck, Inc.
- 19 -

Generalized Formal Package Parameters

! Allow partial specification of actual parameters
- In Ada 95 it is all or nothing
- Important when there are two formal package parameters that need to

be �linked� partially through their actual parameters

! Example

generic

with package I1 is new G1(<>);

with package I2 is new G2(

Element => I1.Element, others => <>);

package New_Abstraction is ...

© 2004 SofCheck, Inc.
- 20 -

Make Limited Types Less Limited

! Allow use of explicitly initialized limited objects, where
initial value is an aggregate.
- Aggregate is built in place (as it is now for controlled types)
- New syntax to represent �implement by default�

" Using �<>� for this, corresponds to notion of �unspecified�
- Still no copying allowed, and no assignment statements
- Aggregates can be used as initial expression for declaration, as

expression for initialized allocator, and as actual parameter value

! Allow functions to return limited objects
- Simple return statement must return aggregate or function call
- Extended return statement may build up result and return
- Function call can be used where aggregate is allowed above
- Replaces �return-by-reference� of Ada 95

" Use anonymous access type results instead

© 2004 SofCheck, Inc.
- 21 -

Ada 2005 Summary

! Complete the object-oriented capabilities
- Multiple Inheritance via Interfaces
- Cyclic Dependence between Abstractions
- Object.Operation Notation Supported

! Enhance the standardized library
- Containers
- Directories, Calendar, Environment Variables
- Linear Algebra

! Extend Ada�s Unmatched Real-Time and High-Integrity Support:
- Synchronized Interfaces to integrate O-O and Real-Time
- High-Integrity Ravenscar Run-Time Profile
- Enhanced Scheduling and Time Control

" Earliest Deadline First (EDF)
" Mixed Scheduling Across Priorities (Priority, EDF, Round-Robin)
" Budget-based Scheduling

© 2004 SofCheck, Inc.
- 22 -

Ada 2005 � Putting It All Together

Full Object-
Orientation

Space and Time
Efficiency

Hard and Soft
Real-Time

SafetySafety

PortabilityPortability

InteroperabilityInteroperability

Active and Passive
Synchronized Interfaces

EDF
Scheduling

Protected
Types

Multi-Interface
Inheritance

Default Static
Binding

