\

/a ofCheck

SOFTWARE ANALYSIS AND VERIFICATION

Ada 2005
Putting It All Together

S. Tucker Taft, Chairman and CTO
SofCheck, Inc.
Ada Germany Conference
Stuttgart, Germany — October 2004



Ada 83 Mantra: “No Subsets, No Supersets”

Ada 95 Mantra: “Portable Power to the Programmer”
Ada 2005 Mantra: “Putting It All Together™...

- Safety and Portability of Java

- Efficiency and Flexibility of C/C++

- Unrivaled Standardized Support for Real-Time and High-Integrity
Systems

Open-Source GNAT and Internet have fostered...
- Active interplay between users, vendors, and language lawyers

- Grass roots interest in Ada
- Additional open-source contributions to compiler and library
- Experiments with new syntax and semantics

ﬁﬂfﬂﬁﬂﬂk

© 2004 SofCheck, Inc.



Four Major Ada Compiler Vendors:
- ACT (GNAT Pro)

- Aonix (ObjectAda)
- Green Hills (AdaMulti)
- IBM Rational (Apex)

Several Smaller Ada Compiler Vendors
- DDC-I

- Irvine Compiler
- OC Systems

- RR Software

- SofCheck

Many Tool Vendors Supporting Ada
- |IPL, Vector, LDRA, PolySpace, Grammatech, Praxis...

@éﬂfﬂﬁﬂﬂﬁ

© 2004 SofCheck, Inc.



Stewards of Ada’s Standardization and Evolution

Includes users, vendors, and language lawyers
- Supported by AdaEurope and SIGAda

First “Official” Corrigendum Released 9/2000

First Language “Amendment” Set for Fall 2005

WG9 Established Overall Direction for Amendment...

-

Véﬂfﬂﬁﬂﬂﬁ

© 2004 SofCheck, Inc.



Enhance Ada’s Position as a:

Further Integrate and Enhance the

Safe

High Performance

Flexible

Portable .
Interoperable

Distributed, Concurrent, Real-Time,
Object-Oriented Programming Language -

Object-Oriented Capabilities of Ada )

'Véﬂf(:ﬁﬂﬂﬁ

© 2004 SofCheck, Inc.



Space and Time
Efficiency

Multi-Interface

Inheritance
| EDF
Default Static Scheduling
Binding S
Satety Protected
Portability VSR

Interoperanity

Full Object- Hard and Soft

Orientation S Real-Time

Active and Passive
Synchronized Interfaces

\?éﬂfﬂﬁﬂ{?ﬁ

© 2004 SofCheck, Inc.



" SAFETY

CERTIFIED

Ada is the premier language for safety critical software

Ada’s safety features are critical to making Ada such a
high-productivity language in all domains

Amendments to Ada carefully designed so as to not open
any new safety holes

Several amendments provide even more safety, more
opportunities for catching mistakes at compile-time

ﬁﬂfﬂﬁﬂﬂk

© 2004 SofCheck, Inc.



Syntax to prevent unintentional overriding or
non-overriding of primitive operations
- Catch spelling errors, parameter profile mismatches,
maintenance confusion

Standardized Assert Pragma
- Assertion_Policy pragma determines how Assert is handled by
implementation (Check, Ignore, ...)

Availability of “not null” and “access constant” qualifiers for access
parameters

Standardized High-Integrity “Ravenscar” Profile
More Flexible Information Hiding Structure (“private with”)

Standardized No _Return Pragma
- ldentifies routines guaranteed to never return to point of call

Handlers for Unexpected Task Termination Vgﬂfﬂﬁﬂﬂﬁ

© 2004 SofCheck, Inc.



Ada is a very “strong” standard

Vigorous publicly available validation suite of 3000+ tests
- 2000+ Self-Checking Executable Tests

- Also Includes Large Number of Compile-Time and Link-Time Error
Detection Tests

Active ISO Rapporteur Groups Handling Interpretation Issues
Ada 2005 Enhancements to Existing Ada 95 Library:

- Standard Packages for Files and Directories

- Standard Packages for Calendar Math, Timezones, and I/O

- Standard Package for Environment Variables

- Standard “Container” and Sorting (Generic) Packages

Ada 2005 Enhancements for Real-Time and High-Integrity
- Earliest-Deadline First (EDF) and Round-Robin Scheduling

- Ravenscar High-Integrity Run-Time Profile véﬂfﬂﬁﬂﬂﬁ

© 2004 SofCheck, Inc.



-10 -

Today s Reality:

The rise in importance of the Java Virtual machine and .Net common
runtime

Increasingly complex APls; APl Wars
Component based systems
Multilingual Systems

Dynamically Bound Systems

Cyclic Dependence between types is the norm in complex
O-0 systems

Emergence of Notion of “Interface” that can have multiple
implementations (CORBA, Java, C#, COM)

Amendments to Ada help address this reality

ﬁﬂfﬂﬁﬂﬂk

© 2004 SofCheck, Inc.



11 -

Support Cyclic Dependence Between Types
in Different Packages
- “Limited with” context clause

Support Notion of “Interface” as used in Java,
CORBA, C#, etc.
- “interface” types

- Active and Passive “synchronized” interface types
integrate
O-0 programming with real-time programming

Familiar Object.Operation notation supported
- Uniformity between synchronized and unsynchronized

types

Pragma “Unchecked Union” for interoperating with
C/C++ subsystems

: -r“;\q
)] ]
'f\

yéﬂfﬂﬁﬂﬂﬁ

© 2004 SofCheck, Inc.



limted with Departnents;
package Enpl oyees is
type Enpl oyee is private;
procedure Assign _Enpl oyee(E : i
D : access Departnents. Depart

function Current Depart nment (
D : Enpl oyee) return
access Departnents. Departnent;
end Enpl oyees;

limted wth Enpl oyees; -- << --
package Departnents is

type Departnent is private,

procedure Choose Manager (D : in out Departnent;
Manager : access Enpl oyees. Enpl oyee);

t ments;

VSofCheck

© 2004 SofCheck, Inc.



-13 -

_ Int1 Int2
type NT Is new T

and Intl and Int2 wth
record | end record;

Int1 and Int2 are “Interfaces”
- Declared as: Jtype Intl is interface;|

- Similarto abstract tagged null record (nodata)
- All primitives must be abst ract or nul |

NT must provide primitives that match all primitives of Int1 and Int2
- In other words, NT implements Int1 and Int2.

NT is implicitly convertible to Int1’Class and Int2’Class, and explicitly

convertible back
- and as part of dispatching, of course

Membership test can be used to check before converting
back (narrowing) 'Véﬂf(:ﬁﬂﬂﬁ

© 2004 SofCheck, Inc.



limted wth Cbserved (bjects;
package Cbservers is -- “Cbserver” pattern
type Qobserver is interface;
type Cbserver Ptr is access all Cbserver’ d ass;

procedure Notify(O : in out Cbserver;
(bj : access (bserved (bj ects. Cbserved bj’ d ass)

I s abstract;
procedure Set Next (O : in out Cbserver; Next : Cbserver Ptr)

I s abstract;
function Next(O : Cbserver) return Cbserver Ptr is abstract;

type Cbserver List is private;

procedure Add Cbserver(List : in out Observer List;
O : Qbserver Ptr);
procedure Renove_Observer(List : in out Cbserver_List,;
O : Qbserver Ptr);
function First Cbserver(List : in Cbserver List)
return Observer Ptr; Véﬂmﬁﬂﬂﬁ

© 2004 SofCheck, Inc.

h..'M'



-15 -

Interface concept generalized to apply to Protected and Task types
- “Limited” Interface can be implemented by:

> Non-limited (tagged) interface
> Synchronized interface
- “Synchronized” Interface can be implemented by:

> Task interfaces or types (“active”)
> Protected interfaces or types (“passive”), e.qg.:

type Semaphore is synchroni zed interface;
procedure Acquire(Sem in out Senmaphore);
procedure Rel ease(Sem in out Senmaphore);

protected type Sem Wth _Caution Period is Semaphore with
entry Acquire;
procedur e Rel ease;
function Is In _Caution Period return Bool ean;
procedure Rel ease Wth_ Cauti on;

private

Sem State: ... Véﬂfﬂﬁﬂﬂﬁ
end Sem Wth Caution_Period;

© 2004 SofCheck, Inc.



-16 -

More familiar to users of other object-oriented languages

Reduces need for extensive utilization of “use” clause

Allows for uniform reference to dispatching operations and class-
wide operations, on pointers or objects; e.g.:

package Wndows is
type Root Wndow is abstract tagged private;
procedure Notify Cbservers(Wn : Root Wndow C ass);
procedure Display(Wn : Root Wndow) is abstract;

end W ndows;
package Borders is
t ype Bordered Wndow is new Wndows. Root W ndow with private;

procedure Display(Wn : Bordered W ndow);

procedure P(BW access Bordered W ndow C ass) is

begi n
BW Di spl ay; -- both of ﬁﬂfﬂhﬂﬂﬁ
BW Noti fy Cbservers; -- these jworKk] © 2004 SofCheck, Inc.



-17 -

Generalized Use of Anonymous Access Types

Generalized Parameterization of Formal Packages
Make Limited Types Less Limited

Pragma Pure_Function (from GNAT)

“private with A.B;” — A.B only visible in private part

Downward closures — local subprograms can be passed as
parameters to other subprograms
- Uses anonymous access-to-subprogram types for parameters.

Task termination handlers
- especially for termination due to unhandled exceptions

Véﬂfﬂﬁﬂﬂﬁ

© 2004 SofCheck, Inc.



Two kinds of generalization
- Allow access “parameters” for access-to-constant and
access-to-subprogram cases

- Allow use of anonymous access types in components, object
renamings, and function results

Should help reduce “noise” associated with unnecessary explicit
conversions of access values

Also allow optional specification of “not null” constraint on access
subtypes, and anonymous access type specifications
- E.g.: type String_Ref is access all String not null;

- Improves safety, efficiency, and documentation by pushing check for
null to caller or assigner rather than ultimate point of use.

yéﬂfﬂﬁﬂﬂﬁ

© 2004 SofCheck, Inc.
-18 -



Allow partial specification of actual parameters
- In Ada 95 it is all or nothing

- Important when there are two formal package parameters that need to
be “linked” partially through their actual parameters

Example

generic

wi th package |1 is new GL(<>);
Wi th package 12 is new &
El ement => | 1. El enent, others => <>);

package New Abstraction is ...

Véﬂfﬂﬁﬂﬂﬁ

© 2004 SofCheck, Inc.
-19-



Allow use of explicitly initialized limited objects, where
initial value is an aggregate.
- Aggregate is built in place (as it is now for controlled types)
- New syntax to represent “implement by default”

> Using “<>” for this, corresponds to notion of “unspecified”
- Still no copying allowed, and no assignment statements

- Aggregates can be used as initial expression for declaration, as
expression for initialized allocator, and as actual parameter value

Allow functions to return limited objects
- Simple return statement must return aggregate or function call

- Extended return statement may build up result and return
- Function call can be used where aggregate is allowed above

- Replaces “return-by-reference” of Ada 95
> Use anonymous access type results instead

\?éﬂfﬂﬁﬂ{?ﬁ

© 2004 SofCheck, Inc.
-20-



Complete the object-oriented capabilities
- Multiple Inheritance via Interfaces

- Cyclic Dependence between Abstractions
- Obiject.Operation Notation Supported

Enhance the standardized library
- Containers

- Directories, Calendar, Environment Variables
- Linear Algebra

Extend Ada’s Unmatched Real-Time and High-Integrity Support:
- Synchronized Interfaces to integrate O-O and Real-Time

- High-Integrity Ravenscar Run-Time Profile

- Enhanced Scheduling and Time Control

> Earliest Deadline First (EDF)
> Mixed Scheduling Across Priorities (Priority, EDF, Round-Robin) %é ofCheck
> Budget-based Scheduling

© 2004 SofCheck, Inc.
-21-



Space and Time
Efficiency

Multi-Interface

Inheritance
| EDF
Default Static Scheduling
Binding S
Satety Protected
Portability VSR

Interoperanity

Full Object- Hard and Soft

Orientation S Real-Time

Active and Passive
Synchronized Interfaces

\?éﬂfﬂﬁﬂ{?ﬁ

© 2004 SofCheck, Inc.
-22-



